Final Exam M340

For each of the following decide if it is true or false and give a brief explanation for your answer.

1. The initial value problem $y^{\prime}(t)=t^{2}+\sqrt{y(t)}, y(1)=0$ has a unique local solution.

FALSE
$f(t, y)=t^{2}+\sqrt{y(t)}$ is continuous at $t=1, y=0$ so a solution exists
$\partial_{y} f(t, y)=\frac{1}{2 \sqrt{y}}$ is undefined at $t=1, y=0$ so the solution is not unique
2. The autonomous equation $y^{\prime}(t)=2 y(y+2)(y-3)$ has 2 stable equilibrium points.

FALSE

$f(y)=2 y(y+2)(y-3)$ is zero at $y=-2,0,3$
$f^{\prime}(y)=6 y^{2}-4 y-12$ is positive at $y=-2,3$ and is negative at $y=0$
then $y=-2,3$ are unstable and $y=0$ is stable
3. The equation

$$
2 x^{\prime \prime}(t)+4 x^{\prime}(t)+34 x(t)=0, \quad x(0)=0, x^{\prime}(0)=-2
$$

describes the motion of a spring-mass system starting from the equilibrium position with an upward initial velocity and oscillating with constant amplitude for all $t>0$.

FALSE

the auxiliary equation, $2 r^{2}+4 r+34=2\left[r^{2}+2 r+1+16\right]=0$ has roots $x=-1 \pm 4 i$ so the linearly independent solutions are $e^{-t} \cos 4 t$ and $e^{-t} \sin 4 t$ so the mass oscillates with decreasing amplitude.
4. If $L[y(t)]=0$ is a homogeneous, linear, ordinary differential equation with constant coefficients, then $L\left[e^{r t}\right]=P(r) e^{r t}$. Then $y(t)=e^{r t}$ solves the ODE if r is a root of the auxiliary equation $P(r)=0$.

TRUE
Since $L\left[e^{r t}\right]=P(r) e^{r t}$, and $e^{r t}$ is never zero, $L\left[e^{r t}\right]=0$ if and only if $P(r)=0$.
5. The matrix

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

has an eigenvalue with algebraic multiplicity 3 and geometric multiplicity 2.
TRUE
A is triangular so $\lambda=3,3,3$ has algebraic multiplicity 3 .
since

$$
A-3 I=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has rank equal to 1 , the dimension of $N[A-3 I]=n-r=3-1=2$, so the geometric multiplicity is 2 .
6. If A is the matrix from problem 5 , then $e^{t A}=e^{3 t}\left[\begin{array}{lll}1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

TRUE evidently, $(A-3 I)^{2}=0$ so, $e^{t A}=e^{3 t} e^{(A-3 I) t}=e^{3 t}\left[I+t(A-3 I)+t^{2} / 2(A-3 I)^{2}+\cdots\right]$

$$
=e^{3 t}[I+t(A-3 I)+0]=e^{3 t}\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Solve each of the following problems:

7. Find the general solution to:

$$
t^{2} y^{\prime}(t)+2 t y(t)=5 t^{4} .
$$

Then find the unique solution that satisfies $y(2)=12$.
note that the derivative of t^{2} is $2 t$ so $t^{2} y^{\prime}(t)+2 t y(t)=\frac{d}{d t}\left(t^{2} y(t)\right)$
Then

$$
\begin{aligned}
\frac{d}{d t}\left(t^{2} y(t)\right) & =5 t^{4} \\
t^{2} y(t) & =t^{5}+C \\
y_{\text {Gen }}(t) & =t^{3}+C t^{-2}
\end{aligned}
$$

This is the general solution.
The IC implies $y(2)=8+C / 4=12$ so $C=16$ gives the unique solution to the IVP
8. The matrix

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

has an eigenvalue, $\lambda=2-3 i$, with the corresponding eigenvector, $\vec{E}=\left[\begin{array}{l}i \\ 1\end{array}\right]$. Find the
real valued general solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)$.
$\vec{X}(t)=e^{(2-3 i) t} \vec{E}$ is a complex valued solution to $\vec{X}^{\prime}(t)=A \vec{X}(t)$
Then

$$
\begin{aligned}
\vec{X}(t) & =e^{2 t} e^{i 3 t}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]+i\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \\
& =e^{2 t}[\cos 3 t+i \sin 3 t][\vec{U}+i \vec{V}] \\
& =e^{2 t}\{\cos 3 t \vec{U}-\sin 3 t \vec{V}\}+i e^{2 t}\{\cos 3 t \vec{V}-\sin 3 t \vec{U}\} \\
& =\vec{Z}_{1}(t)+i \vec{Z}_{2}(t)
\end{aligned}
$$

and $\vec{Z}_{1}(t)$ and $\vec{Z}_{2}(t)$ are linearly independent real valued solutions to $\vec{X}^{\prime}(t)=A \vec{X}(t)$. A real valued general solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)$ is then $C_{1} \vec{Z}_{1}(t)+C_{2} \vec{Z}_{2}(t)$
9. Find the general solution for $\vec{X}^{\prime}(t)=A \vec{X}$ if A is the matrix from problem 5 .
$(A-3 I) \vec{X}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \vec{X}$ so $x_{2}=0$ and x_{1}, x_{3} are free.
Then $\vec{E}_{1}=[1,0,0]^{T}$ and $\vec{E}_{2}=[0,0,1]^{T}$ are independent e-vectors for $\lambda=3$.
Let

$$
\begin{aligned}
(A-3 I) \vec{W} & =\vec{E}_{1} \\
\text { so } \quad(A-3 I)^{2} \vec{W} & =(A-3 I) \vec{E}_{1}=\overrightarrow{0}
\end{aligned}
$$

Then $e^{A t} \vec{W}$ solves $\vec{X}^{\prime}(t)=A \vec{X}$ and

$$
\begin{aligned}
e^{A t} \vec{W} & =e^{3 t} e^{(A-3 I) t} \vec{W} \\
& =e^{3 t}[\vec{W}+t(A-3 I) \vec{W}+0] \\
& =e^{3 t}\left[\vec{W}+t \vec{E}_{1}\right]
\end{aligned}
$$

Then the general solution to the system can be written as

$$
\vec{X}(t)=C_{1} e^{3 t} \vec{E}_{1}+C_{2} e^{3 t} \vec{E}_{2}+C_{3} e^{3 t}\left[\vec{W}+t \vec{E}_{1}\right]
$$

10. Use undetermined coefficients to find the general solution for: $y^{\prime}(t)+2 y(t)=8 t$. Then find the unique solution that satisfied $y(0)=2$.

The homogeneous solution is $y(t)=C e^{-2 t}$
a particular solution will have the form $y_{p}=A t+B$ substituting this into the ODE gives

$$
A+2(A t+B)=8 t
$$

then $2 A=8$ and $A+2 B=0$ so $A=4$ and $B=-2$.
The general solution of the ODE is then $y(t)=C e^{-2 t}+4 t-2$

Since $y(0)=C-2=2$, we get $C=4$ and $y(t)=4 e^{-2 t}+4 t-2$
is the unique solution to the IVP
11. Find the general solution for: $y^{\prime \prime}(t)+4 y^{\prime}(t)+20 y(t)=0$.

The auxiliary equation here is $r^{2}+4 r+20=r^{2}+4 r+4+16=0$
Then $r=-2 \pm 4 i$
The general solution of the ODE is $y(t)=e^{-2 t}\left[C_{1} \cos 4 t+C_{2} \sin 4 t\right]$
12. Use the Laplace transform to solve:

$$
y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=t^{3} \quad y(0)=1, \quad y^{\prime}(0)=-2
$$

Transforming the equation

$$
\begin{aligned}
s^{2} \hat{y}(s)-s+2-(s \hat{y}(s)-1)-2 \hat{y}(s) & =\hat{f}(s) \\
\left(s^{2}-s-2\right) \hat{y}(s) & =s-3+\hat{f}(s) \\
\hat{y}(s) & =\frac{s-3}{(s-2)(s+1)}+\frac{\hat{f}(s)}{(s-2)(s+1)}
\end{aligned}
$$

Then

$$
\frac{s-3}{(s-2)(s+1)}=\frac{4}{3(s+1)}-\frac{1}{3(s-2)}
$$

so

$$
\hat{y}(s)=\frac{4}{3(s+1)}-\frac{1}{3(s-2)}+\left[\frac{1}{3(s-2)}-\frac{1}{3(s+1)}\right] \hat{f}(s)
$$

and using the table to invert the transform,

$$
y(t)=\frac{4}{3} e^{-t}-\frac{1}{3} e^{2 t}+\frac{1}{3} \int_{0}^{t}\left[e^{2(t-\tau)}-e^{-(t-\tau)}\right] \tau^{3} d \tau
$$

